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Abstract
Negative energy scenarios are the most widely studied for the warp metric. In fact, the
prevailing view in the community so far has been that the warp metric necessarily has
negative energies. In this work it is shown that the issue of negative energy densities
associated with the Alcubierre warp metric with a general form function and simi-
lar metrics can be addressed when the whole non-vacuum Einstein equations of the
system are examined. To this end, we have considered matter content in the form of
anisotropic fluids. We have succeeded in writing the Einstein equations in such a way
that some general constraints on thematerial content become evident. This means that,
in rectangular coordinates, the energy density depends necessarily on the tangential
pressures of the fluid. For matter such as dust or isotropic fluids we find that that
density and other related quantities become identically zero. This makes the negative
energy problem spurious. It is also revealed that constructingAlcubierre-basedmetrics
using cylindrical and spherical coordinates results in a system of equations that are
amenable to more systematic analysis. The field equations constrain the dependence
of the form function and how this impacts the matter content. In all cases we deter-
mine that energy density is not mandatory negative, despite the recurrent claims in the
literature. This result prompts a reevaluation of the negative energy requirements and
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underscore the importance of cylindrical and spherical type-warps to demonstrate that
negative energy density is not an intrinsic unavoidable feature of warp drives.

Keywords Anisotropic matter · Warpdrive · Cartesian warpdrive · Spherical warp ·
Cylindrical warp
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1 Introduction

In 1994 the warp drive metric was proposed as a way of modelling displacement
at superluminal velocities [1]. This raised immediate interest and continues to be of
interest to the community. One of the aspects that has been widely discussed is that
in studying the expression for the energy density needed to support the warp metric,
it was found that it must be negative. It is only recently, however, that a thorough
examination of the Einstein equations as a whole has been carried out for this type of
metric.

All these aspects, as well as the implementation of energy conditions, have been
extensively studied over the years [2–28].

As is well known, to study problems in general relativity we must consider the
Einstein field equations

Gμν = 8πTμν, (1)

which relate the geometry of spacetime to the material content. Typically, the problem
of energy densities related to thewarp drive has been studied by looking at the geometry
using the relation

Gμνu
μuν = 8πTμνu

μuν −→ ρ = 1

8π
Gμνu

μuν, (2)
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with uμ characterising a free-falling observer. However, as mentioned above, rarely
has there been a more exhaustive exploration of the full matter content and even more
of Einstein’s equations in their integrity. Recently, Santos et al. carried out a study
of the Einstein equations and searched to discern the matter content that could be
consistent with the warp metric [29–34]. To do so, they heuristically suggested a form
for the energy–momentum tensor and made the analysis. Unfortunately, the structure
of the Einstein equations is so complex that the analytical work of drawing conclusions
is always extremely difficult. This is why in this work we intend to perform a revision
of the original Alcubierre warp with general form function in Cartesian coordinates
and other related warp metrics with other symmetries, studying in detail which are the
restrictions imposed by the Einstein equations as well as the limitations related to the
material content. In this sense we will consider as a source an anisotropic fluid which
contains sufficient flexibility to accommodate the cases of isotropic fluid and dust. All
these cases are of interest for the characterization of possible sources of matter.

Wepropose to revisit theAlcubierremetricwith general form function by examining
in more detail the structure of the Einstein equations and the matter content that
supports the warp spacetime. We further propose to examine how the constraints in
the equations determine conditions for the energy density and how these conditions
change as wemodify the symmetry of the residual flat space proper to anywarpmetric.

In order to analyze the generality of these results, in Sect. 2wewill study the original
alcubierre metric with a general form function, looking in depth at the material content
able to sustain this configuration. In order to do this we propose a rigorous writing for
the energy momentum tensor describing anisotropic matter. We will then see that by
writing the Einstein equations in a convenient form, some restrictions become evident
which are of central importance for drawing conclusions about the energy density.

Then in Sect. 3, we consider an Alcubierre-type warp where the residual flat geom-
etry appearing in the line element is written in cylindrical coordinates. In this section
will focus on examining the warp in the z-direction and identifying the specific matter
requirements for sustaining this metric. We further explore some formal similarities
with the Cartesian case above. Subsequently, in Sects. 4 and 5 we will perform anal-
ogous procedure to the previous one but warping in the cylindrical radial coordinate
and in the spherical radial coordinate respectively. In all sections our main interest is
to determine how the various constraints imposed by the entire set of Einstein equa-
tions and the matter content determine the energy density. Finally we will give some
conclusions in Sect. 6.

2 Alcubierre warp drive

In this section, we review the general elements of Alcubierre’s original article [1]. The
proposed line element was

ds2 = −dt2 + (dx − βdt)2 + dy2 + dz2. (3)

This line element was inspired by 3+1 formalism. The metric in matrix form is given
by
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gμν =

⎡
⎢⎢⎣

−(1 − β2) −β 0 0
−β 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ . (4)

In Alcubierre’s original article the quantities involved are defined as follows

β = vs(t) f (rs), rs =
√

(x − xs(t))2 + y2 + z2, vs(t) = dxs(t)

dt
, (5)

where the function f (rs) is given by

f (rs) = tanh [σ(rs + R)] − tanh [σ(rs − R)]
2 tanh (σ R)

, (6)

with σ and R positive parameters. From Eq. (5) it is clear that β, as proposed by
Alcubierre, should be a function of all coordinates β(t, x, y, z).

In order to study the condition on energy density, Alcubierre considered an Eulerian
(free falling) observer characterized by

uμ = (−1, 0, 0, 0), uμ = (1, β, 0, 0). (7)

Note that this is a timelike vector uμuμ = −1. Using these equations and the well-
known relation Tμνuμuν = ρ he found an expression for the energy density

T 00 = G00

8π
= − 1

32π
v2s

(
d f

drs

)2 y2 + z2

r2s
= ρ. (8)

For further analysis, it is convenient to express the above equation in terms of the β

function

ρ = − 1

32π

[ (
∂β

∂ y

)2

+
(

∂β

∂z

)2 ]
. (9)

Regardless of whether it is expressed as (8) or (9), it is possible to observe the same
behavior that Alcubierre noted and which has been the subject of extensive discussion
up to now, namely, that the warp metric applies only to matter with negative energy
density

2.1 Einstein’s equations and constraints

Alcubierre primarily addressed the geometrical aspects when introducing the warp
metric. However, a comprehensive examination of the issue requires considering the
matter content as well. To achieve this, we suggest using an anisotropic fluid as a
source

Tμν = (ρ + px )uμuν + px gμν + (py − px )sμsν + (pz − px )tμtν . (10)
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The 4–vector uμ is defined in (7) while sμ and tμ are spacelike 4-vectors pointing
in the y-direction and z-direction respectively. They are given by

sμ = (0, 0, 1, 0), tμ = (0, 0, 0, 1). (11)

These vectors satisfy the relations sμsμ = 1, tμtμ = 1 and uμsμ = uμtμ = 0.
In matrix form the energy–momentum tensor is written as

Tμν =

⎡
⎢⎢⎣

ρ + β2 px −β px 0 0
−β px px 0 0
0 0 py 0
0 0 0 pz

⎤
⎥⎥⎦ (12)

Here ρ corresponds to the energy density, px is the normal pressure and py and pz
are the tangential pressures. Note that for isotropic matter we should put px = py =
pz = p while for dust we set px = py = pz = 0.

Using the metric (4) and the energy–momentum tensor (12) we can write Einstein’s
equations (1) explicitly

− 1

4
(1 + 3β2)

[ (
∂β

∂ y

)2

+
(

∂β

∂z

)2 ]
− β

(
∂2β

∂ y2
+ ∂2β

∂z2

)
= 8π(ρ + β2 px ),

(13)

3

4
β

[ (
∂β

∂ y

)2

+
(

∂β

∂z

)2 ]
+ 1

2

(
∂2β

∂ y2
+ ∂2β

∂z2

)
= −8πβ px , (14)

−3

4

[(
∂β

∂ y

)2

+
(

∂β

∂z

)2 ]
= 8π px , (15)

−1

2

∂2β

∂x∂ y
− 1

2
β

(
2
∂β

∂x

∂β

∂ y
+ β

∂2β

∂x∂ y
+ ∂2β

∂t∂ y

)
= 0, (16)

1

2

(
2
∂β

∂x

∂β

∂ y
+ β

∂2β

∂x∂ y
+ ∂2β

∂t∂ y

)
= 0, (17)

−
[(

∂β

∂x

)2

+ β
∂2β

∂x2
+ ∂2β

∂t∂x

]
+ 1

4

[(
∂β

∂ y

)2

−
(

∂β

∂z

)2 ]
= 8π py, (18)

−1

2

∂2β

∂x∂z
− 1

2
β

(
2
∂β

∂x

∂β

∂z
+ β

∂2β

∂x∂z
+ ∂2β

∂t∂z

)
= 0, (19)

1

2

(
2
∂β

∂x

∂β

∂z
+ β

∂2β

∂x∂z
+ ∂2β

∂t∂z

)
= 0, (20)

1

2

∂β

∂ y

∂β

∂z
= 0, (21)

−
[(

∂β

∂x

)2

+ β
∂2β

∂x2
+ ∂2β

∂t∂x

]
− 1

4

[ (
∂β

∂ y

)2

−
(

∂β

∂z

)2 ]
= 8π pz . (22)
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The equations (13)–(22) constitute a formidable coupled system of non–linear par-
tial differential equations. It is not the purpose of this article to solve these equations
but rather to point out that there are some restrictions on the β function that can be
derived directly from them.

From the previous relations, we extract the following constraints

from (17) into (16):
∂2β

∂x∂ y
= 0, (23)

from (20) into (19):
∂2β

∂x∂z
= 0, (24)

from (21):
∂β

∂ y
= 0 or

∂β

∂z
= 0, (25)

from (18) + (22):

(
∂β

∂x

)2

+ β
∂2β

∂x2
+ ∂2β

∂t∂x
= −4π(py + pz), (26)

from(18) − (22) : 1
2

[(
∂β

∂ y

)2

−
(

∂β

∂z

)2
]

= 8π(py − pz). (27)

Of all the constraints found, the one given by (25) is critical.
No matter the choice in conditions (25), one of the constrains (23) or (24) is

immediately satisfied. In turn, it impacts on equation (27), which is further simplified.
As a consequence of equation (25), the β function is restricted to depend only on

(t, x, y) or (t, x, z). This leads to a simpler system, which is reflected in the energy-
momentum tensor representing the matter content. In particular, it can be seen that
this necessarily implies that either we have

ρ = − 1

32π

[ (
∂β

∂ y

)2

+
(

∂β

∂z

)2 ]
−→ ρ = 1

2
(py − pz), (28)

or

ρ = − 1

32π

[ (
∂β

∂ y

)2

+
(

∂β

∂z

)2 ]
−→ ρ = 1

2
(pz − py), (29)

where we have used condition (25) together with equations (9) and (27). Due to the
restrictions imposed by Einstein’s equations the energy density for the Alcubierre
warp metric is unequivocally dependent of the tangential anisotropies.

As can be observed in equations (28) and (29), the sign of ρ will depend on which
of the tangential pressures dominates.

Another result that follows from the constraints found is that the normal pressure
px must also depend on the anisotropy in general, that is

− 3

4

(
∂β

∂z

)2

= 8π px −→ 3

2
(py − pz) = px = 3ρ. (30)
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or

− 3

4

(
∂β

∂ y

)2

= 8π px −→ 3

2
(pz − py) = px = 3ρ. (31)

These are equations of state imposed by the field equations that completely determine
the behavior of the system and leave room to remove the exotics signs appearing in
the matter content.

It is interesting to examine what happens when we consider another class of fluids.
For example, when we have a partially anisotropic fluid with px = p and py = pz =
p⊥, we obtain from Eqs. (30) and (31)

p = 0, ρ = 0 −→ ∂β

∂z
= 0, (32)

p = 0, ρ = 0 −→ ∂β

∂ y
= 0, (33)

that is, both the normal pressure p and the density ρ cancel out. The same phenomenon
occurs if we consider an isotropic fluid or dust. Thus we find that the occurrence of a
non-zero energy density necessarily depends on the system being totally anisotropic.
The same is valid if an isotropic fluid where px = py = pz = p or even dust with
px = py = pz = 0 is considered. In either case, Eqs. (32) and (33) are reproduced.
This fact is a consequence of taking into account all the Einstein equations and their
implications on the material content. We stress the fact that this result is completely
general.

3 Warp drive in cylindrical coordinates along the z–direction

Following an analogous procedure to [25, 34], we analyse the spacetime geometry
and its consequence using cylindrical coordinates.

Using the line element (3) as a guide we constructed the following line element in
cylindrical coordinates

ds2 = −dt2 + dr2 + r2dϕ2 + (dz − βdt)2

= −(1 − β2)dt2 − 2βdtdz + dr2 + r2dϕ2 + dz2. (34)

Here, we have warped in the z-direction. To write this expression we have transformed
the residual flat space that appears in the Alcubierre warp metric into cylindrical
coordinates. As in the previous section, for us the form function β = β(t, r , ϕ, z) is
arbitrary and we will rather look for those conditions that restrict its form from the
field equations.
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From the line element (34) we can write the metric explicitly for the z-warp in
cylindrical coordinates

gμν =

⎡
⎢⎢⎣

−(1 − β2) 0 0 −β

0 1 0 0
0 0 r2 0

−β 0 0 1

⎤
⎥⎥⎦ . (35)

We can notice that this metric has an analogous form to the Alcubierre metric. With
the warp bubble moving in the z direction and a flat residual metric expressed in
cylindrical coordinates. This metric admits a Killing vector ξμ = (−1, 0, 0, 0) if β is
time-independent and therefore the spacetime is stationary.

We are interested in providing matter content in the form of an energy–momentum
tensor so that we can study whether the spacetime proposed by Alcubierre (described
here in cylindrical coordinates) can be sustained using this matter configuration.

In order to write the energy–momentum tensor, we consider an Eulerian observer
described by the following 4-velocity

uμ = (−1, 0, 0, 0), uμ = (1, 0, 0, β). (36)

Where uμ is a timelike vector obeying uμuμ = −1. Using this parameterisation, we
consider a completely anisotropic fluid given by the expression

Tμν = (ρ + pϕ)uμuν + pϕgμν + (pz − pϕ)sμsν + (pr − pϕ)tμtν, (37)

where uμ is given by (36) and sμ and tμ are

sμ = (−β, 0, 0, 1), tμ = (0, 1, 0, 0). (38)

These vectors are spacelike and satisfy the relations sμsμ = 1, tμtμ = 1, sμtμ = 0,
uμsμ = 0, and uμtμ = 0. In matrix form we have

Tμν =

⎡
⎢⎢⎣

ρ + β2 pz 0 0 −β pz
0 pr 0 0
0 0 r2 pϕ 0

−β pz 0 0 pz

⎤
⎥⎥⎦ . (39)

In these expressions ρ corresponds to the energy density, pz is the normal pressure in z
direction, and pr and pϕ are the tangential pressures in r and ϕ directions respectively.
If we want to constrain to isotropic matter we put pr = pϕ = pz = p, and if we want
to consider dust we use pi = 0 for all i . We can also discuss a partially anisotropic
case which will be relevant below and where pr = pϕ has to be examined.

Assuming a form function β = β(t, r , ϕ, z) and using the metric (35) and the
energy–momentum tensor (39) we canwrite Einstein’s equations (1) for this geometry.
After simplifying we find
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− 1

4r2

[(
∂β

∂ϕ

)2

+ r2
(

∂β

∂r

)2
]

= 8πρ, (40)

∂2β

∂r∂z
= 0, (41)

(
∂β

∂z

)2

+ β
∂2β

∂z2
+ ∂2β

∂t∂z
= −4π(pr + pϕ), (42)

∂2β

∂ϕ∂z
= 0, (43)

∂β

∂r

∂β

∂ϕ
= 0, (44)

− 1

2r2

[(
∂β

∂ϕ

)2

− r2
(

∂β

∂r

)2
]

= 8π(pr − pϕ), (45)

∂2β

∂ϕ2 + r
∂β

∂r
+ r2

∂2β

∂r2
= 0, (46)

2
∂β

∂r

∂β

∂z
+ β

∂2β

∂r∂z
+ ∂2β

∂t∂r
= 0, (47)

2
∂β

∂ϕ

∂β

∂z
+ β

∂2β

∂ϕ∂z
+ ∂2β

∂t∂ϕ
= 0, (48)

− 3

4r2

[(
∂β

∂ϕ

)2

+ r2
(

∂β

∂r

)2
]

= 8π pz . (49)

The Eqs. (40)–(49) constitute a coupled system of non-linear partial differential equa-
tions. We do not solve these equations, but rather to make some general remarks that
can be derived from them. We note the formal similarity in this set of equations with
those found after simplifying in the previous section in Cartesian coordinates. We can
see from Eq. (44) that two cases emerge which are worth studying in detail.

3.1 Case 1:
@ˇ
@r

= 0

When this condition is imposed on the system of equations, we find that it reduces to

− 1

4r2

(
∂β

∂ϕ

)2

= 8πρ, (50)

(
∂β

∂z

)2

+ β
∂2β

∂z2
+ ∂2β

∂t∂z
= −4π(pr + pϕ), (51)

∂2β

∂ϕ∂z
= 0, (52)

− 1

2r2

(
∂β

∂ϕ

)2

= 8π(pr − pϕ), (53)
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∂2β

∂ϕ2 = 0, (54)

2
∂β

∂ϕ

∂β

∂z
+ β

∂2β

∂ϕ∂z
+ ∂2β

∂t∂ϕ
= 0, (55)

− 3

4r2

(
∂β

∂ϕ

)2

= 8π pz . (56)

We recognise that by requiring the form function to be of type β = β(t, ϕ, z), the
system is significantly reduced. We can also observe from the Eqs. (50), (53) and
(56) that some relations naturally arise for the components of the energy-momentum
tensor

pz = 3ρ, (57)

2ρ = pr − pϕ. (58)

These relations help to characterise the nature of the fluid that could support the warp
metric. Even further, since Eq. (52) is also a constrain it implies the possibility that β
is independent either of z or ϕ. If β does not depend on z we have

pr = −pϕ. (59)

The case when β is independent of ϕ leads to the results in Sect. 3.2.

3.2 Case 2: @ˇ
@' = 0

Now, evaluating the second possible condition for the Eq. (44), we obtain

− 1

4

(
∂β

∂r

)2

= 8πρ, (60)

(
∂β

∂z

)2

+ β
∂2β

∂z2
+ ∂2β

∂t∂z
= −4π(pr + pϕ), (61)

∂2β

∂r∂z
= 0, (62)

1

2

(
∂β

∂r

)2

= 8π(pr − pϕ), (63)

∂β

∂r
+ r

∂2β

∂r2
= 0, (64)

2
∂β

∂r

∂β

∂z
+ β

∂2β

∂r∂z
+ ∂2β

∂t∂r
= 0, (65)

−3

4

(
∂β

∂r

)2

= 8π pz . (66)

123



The alcubierre warp drive metric revisited: an investigation... Page 11 of 19    60 

Once more the constraint permits reducing the system of equations by considering
β = β(t, r , z). In addition, relations emerge between the functions describing the
matter content, this time are given by

pz = 3ρ, (67)

2ρ = pϕ − pr (68)

We note that the equation relating ρ and pz is the same as in the previous case but the
relation between ρ and the tangential pressures changes sign. As in the previous case,
in order to fulfil Eq. (62) the function β should be either independent of r or z. The
r–independent case leads to the results of the previous Sect. 3.1. In addition, when β

does not depend on z the Eq. (59) is recovered.
So far we have written down the simplified Einstein equations and found that they

impose a restriction on the form function β, namely it cannot depend on both r , ϕ and
also on z.

Looking at Eq. (40) we see that it is essentially the negative energy result reported
from Alcubierre’s seminal paper.

It is important to remark that, in reality, the appearance of both terms is forbidden
by the constrain (44), consequently, either (50) or (60) must be satisfied.

With this symmetry, and in the same way as in Cartesian coordinates, there is an
interesting resultwhen the tangential pressures are equal, pϕ = pr = p⊥. By imposing
this condition on cases 1 and 2, we see that they reduce to a single case described by
the following equations

ρ = 0, (69)

pz = 0, (70)(
∂β

∂z

)2

+ β
∂2β

∂z2
+ ∂2β

∂t∂z
= −8π p⊥. (71)

In this special case we obtain a fluid that has only tangential equal pressures and acts
as a source for spacetime dynamics. In terms of the derivatives of β, this is equivalent
to saying that it is independent of r and ϕ coordinates. The remarkable thing is that
the density cancels identically and therefore there is no negative energy problem.

The results of our analysis reveal that in systems such as dust, isotropic fluid, or
anisotropic fluids with equal tangential pressures, the problem of negative energy does
not arise. In other words, the negative energy problem is necessarily associated with
the complete anisotropy of the system.

3.3 Energy density analysis

The results obtained above for cases 1 and 2 provide us with a new expression for the
energy density equation. Here we can find an interesting relation when considering
either (50), (58) or (60), (68)
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Case 1: − 1
4r2

(
∂β
∂ϕ

)2 = 4π(pr − pϕ), (72)

Case 2: − 1
4

(
∂β
∂r

)2 = 4π(pϕ − pr ). (73)

In either case it can be seen that the right-hand side can be negative depending on
which of the tangential pressures dominates. On the other hand, we might consider
what happens if the beta function is also independent of the z coordinate

Case 1: ρ = −pϕ, 1
4r2

(
∂β
∂ϕ

)2 = 8π pϕ, (74)

Case 2: ρ = −pr ,
1
4

(
∂β
∂r

)2 = 8π pr . (75)

Again, it is observed that the expression for the density is closely related to the
anisotropy of the system and in both cases no inconsistencies are evident. In par-
ticular, it is not observed that the energy density must be negative. Finally, for the
partially anisotropic case, if β does not depend on the z coordinate, the matter content
must be zero, ρ = 0, pz = pr = pϕ = 0.

This case turns out to be very similar to the original Alcubierre case discussed in
the previous section with the obvious advantage that its analysis and the drawing of
consequences is much simpler.

4 Warp drive in cylindrical coordinates along the r–direction

Another way of approaching the warp drive using cylindrical coordinates is to
implement it in the radial r -coordinate. In this case the metric is written as

gμν =

⎡
⎢⎢⎣

−(1 − β2) −β 0 0
−β 1 0 0
0 0 r2 0
0 0 0 1

⎤
⎥⎥⎦ . (76)

Following a procedure analogous to that of the previous section, we can write the
momentum energy tensor for an anisotropic fluid in these coordinates. In this way we
find

Tμν =

⎡
⎢⎢⎣

ρ + β2 pr −β pr 0 0
−β pr pr 0 0
0 0 r2 pϕ 0
0 0 0 pz

⎤
⎥⎥⎦ . (77)

As in the previous sections, this momentum energy tensor can be particularised to
consider different cases such as isotropic fluid or dust.
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Assuming again a functionβ(t, r , ϕ, z), and after simplifying, wewrite the Einstein
equations for this configuration

− 1

4r2

[(
∂β

∂ϕ

)2

+ r2
(

∂β

∂z

)2

− 4rβ
∂β

∂r

]
= 8πρ, (78)

∂2β

∂ϕ2 + r2
∂2β

∂z2
= 0, (79)

− 1

4r2

[
3

(
∂β

∂ϕ

)2

+ 3r2
(

∂β

∂z

)2

+ 4r

(
β

∂β

∂r
+ ∂β

∂t

)]
= 8π pr , (80)

∂β

∂ϕ
− r

∂2β

∂r∂ϕ
= 0, (81)

2r
∂β

∂r

∂β

∂ϕ
+ ∂2β

∂t∂ϕ
= 0, (82)

1

4

{(
∂β

∂ϕ

)2

− r2
[(

∂β

∂z

)2

+ 4

(
∂β

∂r

)2

+ 4β
∂2β

∂r2
+ 4

∂2β

∂t∂r

]}
= 8πr2 pϕ, (83)

∂β

∂z
+ r

∂2β

∂r∂z
= 0, (84)

2
∂β

∂r

∂β

∂z
+ ∂2β

∂t∂z
= 0, (85)

∂β

∂ϕ

∂β

∂z
= 0, (86)

1

2

[
r2

(
∂β

∂z

)2

−
(

∂β

∂ϕ

)2

− 2r

(
2β

∂β

∂r
+ ∂β

∂t

)]
= 8πr2(pz − pϕ).

(87)

It is important to note that this set of equations has a very different structure from
the case studied in the previous section where we examined a cylindrical warp in the
z-direction. In fact in the present case it is not trivial to find a relationship purely in
terms of the anisotropic fluid variables.

4.1 Case 1: @ˇ@z = 0

It is clear from the above equations that by using the expression (86)we can simplify the
whole set andwrite a reduced andmore neat set of equations. In this sense, considering
β independent of the z-coordinate we obtain
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− 1

4r2

[(
∂β

∂ϕ

)2

− 4rβ
∂β

∂r

]
= 8πρ, (88)

∂2β

∂ϕ2 = 0, (89)

− 1

4r2

[
3

(
∂β

∂ϕ

)2

+ 4r

(
β

∂β

∂r
+ ∂β

∂t

)]
= 8π pr , (90)

∂β

∂ϕ
− r

∂2β

∂r∂ϕ
= 0, (91)

2r
∂β

∂r

∂β

∂ϕ
+ ∂2β

∂t∂ϕ
= 0, (92)

1

4

{(
∂β

∂ϕ

)2

− 4r2
[(

∂β

∂r

)2

+ β
∂2β

∂r2
+ ∂2β

∂t∂r

]}
= 8πr2 pϕ, (93)

−1

2

[(
∂β

∂ϕ

)2

+ 2r

(
2β

∂β

∂r
+ ∂β

∂t

)]
= 8πr2(pz − pϕ). (94)

Moreover, we can find a relation between the fluid variables as

ρ = pr + pϕ − pz . (95)

In addition, if we consider that the function β is also independent of r , we observe
by Eq. (91) that it must necessarily also be independent of ϕ. As a consequence, the
density ρ and the tangential pressure pϕ vanish, leaving only the expression

pz = pr . (96)

This corresponds to an anisotropic fluid model with a peculiar anisotropy configura-
tion.

4.2 Case 2:
@ˇ
@'

= 0

In this case, using the fact that the function β is independent of the ϕ-coordinate, the
equations are simplified to

− 1

4r2

[
r2

(
∂β

∂z

)2

− 4rβ
∂β

∂r

]
= 8πρ, (97)

∂2β

∂z2
= 0, (98)

− 1

4r2

[
3r2

(
∂β

∂z

)2

+ 4r

(
β

∂β

∂r
+ ∂β

∂t

)]
= 8π pr , (99)
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−1

4

[(
∂β

∂z

)2

+ 4

(
∂β

∂r

)2

+ 4β
∂2β

∂r2
+ 4

∂2β

∂t∂r

]
= 8π pϕ, (100)

∂β

∂z
+ ∂2β

∂r∂z
= 0, (101)

2
∂β

∂r

∂β

∂z
+ ∂2β

∂t∂z
= 0, (102)

1

2

[
r2

(
∂β

∂z

)2

− 2r

(
2β

∂β

∂r
+ ∂β

∂t

)]
= 8πr2(pz − pϕ). (103)

A simple relationship between the fluid variables cannot be obtained in this scenario.
The same will occur in the next section where we deal with spherical symmetry. Now,
considering that the function β does not depend on the r -coordinate, we see by (101)
that it is necessarily also independent of the z-coordinate. Thus we observe that ρ = 0,
pϕ = 0 and the relation (96) of the previous case is again satisfied.

What is important to mention is that both expressions for density (88) and (97), do
not necessarily imply that density ρ must be negative as is often claimed.Moreover, we
find again that non-zero densities depend on the system being completely anisotropic
as we have seen in the cases studied previously.

5 Warp drive in spherical coordinates

In a prior article, we were able to formulate a warp metric with spherical coordinates
using the Alcubierre metric as a basis [34]. We propose the following metric

gμν =

⎡
⎢⎢⎣

−(1 − β2) −β 0 0
−β 1 0 0
0 0 r2 0
0 0 0 r2 sin2θ

⎤
⎥⎥⎦ . (104)

This corresponds to a type ofAlcubierre’smetricwith awarp bubble on radial direction
and the residual flat space described by spherical coordinates. In the following we will
explore the conditions on β due to the constrains imposed by the field equations.

In general, we consider the form function as a quantity dependent of both time and
radial coordinates β(t, r).

5.1 Anisotropic matter content in the spherical warp

In order to study the matter content, we consider an Eulerian observer as it was done
in the previous sections discribing an anisotropic fluid in the form
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Tμν =

⎡
⎢⎢⎣

ρ + β2 pr −β pr 0 0
−β pr pr 0 0
0 0 r2 p⊥ 0
0 0 0 r2 sin2θ p⊥

⎤
⎥⎥⎦ . (105)

This corresponds to an anisotropic fluid, which reduces to isotropic case when
p⊥ = pr . An interesting aspect with respect to the previous cases is that due to the
spherical symmetry, both tangential pressures are necessarily equal. This can be seen
by examining the Einstein equations related to Gθθ and Gϕϕ .

Using the metric and the energy-momentum tensor we write the Einstein equations
for this system

β

r2

(
β + 2r

∂β

∂r

)
=8πρ, (106)

β

r2

(
β + 2r

∂β

∂r

)
+ 2

r

∂β

∂t
=−8π pr , (107)

β2 + r
∂β

∂t
− r2

[
∂

∂r

(
β

∂β

∂r

)
+ ∂2β

∂t∂r

]
=8πr2�, (108)

here � = p⊥ − pr is the anisotropy factor. This system differs significantly from
the cases discussed above. In the present case there is no simple relation between the
physical quantities of the fluid. What can be clearly seen is that there is no condition
that requires the energy to be negative. The system of equations obtained has as sources
the density ρ, the radial pressure pr and the anisotropy factor �.

In summary, it can be stated that: (i) the energy density is in general finite, even
in the absence of anisotropy, differing with the Alcubierre’s original warp. (ii) The
sign of ρ is not restricted to be negative, it depends by construction on positive and
negative terms and furthermore the anisotropy by definition can have negative or
positive contributions that add to overall the density.

6 Conclusions

In this work we have carried out an exhaustive revision of the Alcubierre-type metrics
with general β function, considering the Einstein equations in their entirety. We have
considered some modifications to the geometry of the original metric and evaluated
some of the consequences on the matter content exploring warps using cylindrical and
spherical coordinates. By performing a detailed inspection of the equations we have
managed to express them in a convenient way so that it is possible to extract simple
constraints on the β function and thus draw conclusions for the material content, in
particular for the energy density.

The main conclusion of this work is that the assertion that the Alcubierre warp
requires by necessity negative energy density should be taken with caution. In partic-
ular, we have seen how the matter content, expressed in the momentum energy tensor,
modifies the possible values of the energy density.
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In the specific case of the Alcubierre warp in Cartesian coordinates we have seen
how the density depends directly on the difference in tangential pressures and therefore
of the complete anisotropy of the fluid. Thus a fluid with equal tangential pressures, a
perfect isotropic fluid and even dust produce null energy densities. Moreover, in the
case where the tangential pressures are different, the energy density cannot necessarily
be said to be negative. The dependence of the energy density on the difference in
tangential pressures allows us to have a mechanism by which this quantity would
effectively reach negative values and not as a characterisation of an exotic fluid type.

When exploring the warp metric in other symmetries we have found qualitatively
different behaviour in each of the metrics considered. The geometrical configuration
most similar to the original Cartesian case is the one corresponding to a warp in
cylindrical coordinates in the z-direction. We obtain a completely analogous relation
between the anisotropic fluid variables in this case, and observe the dependence of the
density on the difference of the tangential pressures.

When considering the cylindrical warp in the r -direction and the spherical warp
in the r -direction, it is observed that the results change. In these cases it is often not
even possible to find a relationship between the physical variables of the fluid itself.
However, the most important thing is that in both cases the expression of the energy
density does not prove that it must be negative as has been recurrently claimed in the
literature.

The claims of negative energy density have beenmade from studying the expression
relating the energy density to the geometry (9), omitting all the restrictions that are
imposed by the rest of the Einstein equations. Moreover, it is only recently that we
have begun to studywhat the appropriatematerial content should be in order to support
the geometry of warp drives and thus understand their real physical feasibility.

In this sense, we believe that further studies should be undertaken to help elucidate
the appropriate matter content that gives rise to warp configurations. In this way we
will gain an understanding not only of the geometrical aspects of the theory but also
of the nature of the matter that makes them viable.
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